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High frequency oscillation in photonic crystal nanolasers
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We observed modulated oscillations in lasers of up to 130 GHz by conducting frequency domain
measurements on photonic crystal lasers with built-in saturable absorbers. This is an example of
how the small volumes of photonic crystal lasers lead to increases in the internal modulation
frequencies and enables dramatic improvements of the laser modulation r&@049American
Institute of Physics.[DOI: 10.1063/1.1713051

Optical nanocavities offer the unique ability to enhance  We tested all of our lasers by optically pumping them
or inhibit spontaneous emission? and to generate high with an 830 nm laser diode at room temperature. The pump
electric field. We have explored the fundamental limits ofbeam was focused to a @2m diameter spot and carefully
miniaturization of such optical cavities for photon localiza- aligned onto the center of our photonic crystal cavities. Part
tion, and have found that many of the functional building of emission from the PC nanolasers was directed through a
blocks for integrated optical systems, such as lasers, opticalo0x objective lens and coupled into an optical fiber con-
traps; and logic gates greatly benefit from such miniaturiza-nected to an optical spectrum analyzer. The wavelength reso-
tion. Since photon localizatiérf has been predicted to occur |ution of the analyzer was 0.2 nm, whereas ther optical
when introducing disorder within microfabricated photonic pump beam was larger than the mode volume defined by
crystals?~*?much attention has been focused on finding they . = [ ¢(r)E2(r)dV/max (r)EX(r)], and rendered most of
smallest localized mode with the smallest energythe photonic crystal within that lasing mode transparent.
dampind*~** in microfabricated photonic band-gap struc- However, the tails of the electric field from the lasing mode
tures. One of the first devices based on localization of lighiextend beyond the optically pumped transparent photonic
in optical nanocavities was the photonic crystal ldSete-  crystal, and interact with unpumped absorbing material. The
scribed by several group8:*'Here we show modulated 0s- ynpumped material surrounding the laser cavities functions
cillations in such lasers of up to 130 GHz from our frequencyas 4 passive saturable absorber that can give rise to nonlinear
domain measurements. effects in photonic crystal nanolasers, such as bistaBfiity,

Several designs of square and triangular lattice phmom%elf-pulsation, an® switching.
crystals(PCs were evaluated. Here we focus on the high-  \yg have measured luminescence spectra as a function of
quality factor @Q) whispering gallery modes supported by peak pump power, and these are presented in Figsadd
square lattice photonic crystafs'® Geometries of single-, 2(b) for 15 and 50 ns pulses separated by &6 on a

double-, and quadruple-defect coupled cavities are shown iauadruple-defect coupled cavity. Peak power is defined as
Fig. 1(a). The defedis) were fabricated in the center of 21 by

21 square lattices of holes. We modeled the 2D photonic
crystal slab cavity by using three-dimensional finite differ- (@) wy-pulsed LD (b)
ence time domain3D-FDTD) simulation, and calculated IR emission
mode volumes Yoq Of 0.6X, 0.8X, and 1.1 (A/n)3, fom a sample
and for cavities consisting of single-, two-, and four-coupled
defects. To construct our lasers, four InGaAsP quantum wells
were grown to form a 330 nm thick light-emitting slab on an
InP substrate. A detailed method of fabricating our two-
dimensional PC nanolasers is found in Ref. 17. In typical PC T _ (c)
lasers, the lattice spacing) is 450 nm, and the slab thick-
ness @) is 330 nm. The porosity defined bya was varied
between 0.34 and 0.36 amda was varied from 0.6 to 0.8.
CalculatedQ values ranged from 50000 to 100 000 and
the resonance wavelength, was matched to the quantum well
(QW) emission wavelength at 1550 nm. Experimentain
values range from 1000 to 6000 arOL_md the th_reShOId' FlgﬁIG. 1. Two-dimensional photonic crystal slabs with square lattice used in
ures 1b) and Xc) show typical amplitude profiles of the the work: (a) shows drawings of single defect, two-coupled defect, and
electric field obtained from a whispering gallery mode. four-coupled defect cavity membrane structurés;and (c) show electric
field amplitude profiles in a middle of membrane for single defect and

two-coupled defect cavity membrane structures, respectively. One of super-
¥Electronic mail: yoshie@caltech.edu modes is shown for the two-defect coupled cavity.

two defect coupled cavity

Etch-stop layer on InP substrate
Membranes for cavities with InGaAsP active layer
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oo?ggl‘vv\‘,’ e s with a 50us repeat rate at 77 K from a single defect square lattice photonic

crystal slab cavity §=450 nmy=0.34a). The PC cavity supported single

1524 1526 1528 1530 1532 1534 1536 1538 - . . . .
mode lasing of whispering gallery mode in this case. A center peak of C2

Wavelength(nm) peaks are more pronounced than one in 50 ns pulses.
(b) A \J3 A2 BIN_LT
4 7MW M ment: (1) A state with equidistance peaks is delayed to occur
= M and the sharp peaks Al and B1 initiate the occurrences of A2
.-:E: 4.4mwW M and B2 peakgswitching from states 1 to stateg 22) As the
8 | 40mw pump power is increased, three equidistance peaks are more
L 3.4mW M pronounced and the spectral shifts are increased. Experimen-
$ ' f N, { o tally, we have confirmed that the QW saturable absorber sur-
E‘ 2.7mW /AN { RS rounding the laser cavity provides the driving force, which
§ 1252$Vx /\ gives rise to the additional spectral peaks, since the three
o] 0:84mW o~ f\ equidistance peaks vanjsh when the pumping diameter .is
0.47mW N widened to cover the entire lasing mode. Moreover, the equi-
0. {4my : : : ; ; distant peaks are still observed at 77 K, only for longer
1524 1526 1528 1530 1532 1534 1536 1538 pulses as shown in Fig. 3, which confirms that the sideband

Wavelength (nm) features do not result from sample heating, but from satu-
FIG. 2. Laser characteristic$a) and (b) show luminescence spectra as a rable absé%rptlon: ThIS. effect is not observed in quamum.dOt
function of pumping peak power for 15 and 50 ns pulse operations, resped-C lasers, pOSS_Ibly since the quantum dots QO not provide
tively, in four-defect coupled cavities. Peaks A2 and B2 are three equidisenough absorption for nonlinear cavity behavior.
tance peakgone center peak and sidebahdster subtracting A1 and B1 The three equidistance peaks, cannot be explained by
with tails. The peak threshold pump powers are 208 for Al and Bl h46 |ocking. In mode locking, the spectral separation
peaks for 15 ns pulses. Sideband features are not seen at even higher pumpﬁ . . .. .
ing level for 15 ns pulse pumping. The blueshift of the sharp péaksand ~ Should be independent of the pumping conditions anq instead
B1) might be caused by frequency pulling or denser electron-hole plasmavould be dependent on the roundtrip of the cavity. The
effect. pumping pulses are rectangle shaped, and the Fourier-
transformed signals theoretically have higher-order compo-

average power divided by the duty cycle. Comparisons witfents. However, their effects are confirmed to be negligible
identical peak power pumping are appropriate to see changdy @ spectrum analyzer. Instead, amplitude- or frequency-
of lasing spectra measured by different pulses. Two supefhodulated oscillation, which depends on the pumping con-
modes were pumped beyond the |asing thresho|d_ The du@jtions Of the |asel’ CaVity, eXplainS our Observation that these
cycles for the pump beam under these conditions are 0.03Reaks remain at approximately the same relative spectral
and 0.1%, respectively, limited to avoid cavity heating. At Separation. Relaxation oscillatithor absorption-induced
duty cycles below 1%, the luminescence spectra from oupe€lf-pulsation can be used to understand the amplitude-
|asers are Observed to broaden W|th increasing pump pulé@Odulated OSCi”ationS. The I’elaxation frequency iS giVen as
length, and several smaller peaks emerge in the lasing spe@-Pole of the frequency response function of output power.
trum. These additional peaks are not artifacts from cavitVhen a cavity damping rate is faster than photon lifetime,
heating, but result from the time-resolved dynamics withinthe frequency is defined by
nanolaser cavities that are surrounded by saturable absorbing 1 Sg

QW material. Whereas clear symmetric peaks are apparent in fR:Z_ \/— (2)
measurements using 15 ns pulses, additional equidistant & 7p

peaks(labeled A2 and BR as well as extending tails of whereS, gy, and 7, are photon density, temporal rate con-
peaks Al and B1 appear in 50 ns pulse measurements. Singtant and photon lifetime, antk is an internal frequency

lar observations were made for all of our laser cavities, in-defining the modulation speed of a laser. It should be noted
dependent of the number of lasing modes. This pulse-lengtthat the absorption-induced self-pulsation frequency is
dependent spectral behavior even occurs in our triangulamaller than the relaxation oscillation and that the frequency
lattice photonic crystal lasers with fundamentally differentdependence on photon density is sometimes similar to the
cavity designs’ Separations of equidistant peaks dependdependence of relaxation oscillatiGhin order to extract the
upon modes as you can see from peaks A2 and B2. relation of frequencies and photon density, we deconvolved

We have made the following observations in this experi-the spectrum into one sharp Lorentzian peak with a tail in
Downloaded 29 Mar 2006 to 132.239.24.24. Redistribution subject to AIP license or copyright, see http://apl.aip.org/apl/copyright.jsp
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PP, large RC components. By modification of the focused spot
140 140 1 2545 i i ;
° T size of our optical pump beam, we can control the influence
120} o/ 120} 1 of the QWs surrounding the cavity. Although such tuning of
100| ] 100 il the saturable absorber can be used to switch on the high
¥ ol ¥ sl ] frequency oscillations, we have not yet confirmed that our
g - g , PC nanolasers are self-oscillating lasers or relaxation-
or ] or / 1 oscillated lasers. Understanding the noise and the interplay
sor ] 4or / 1 between photons and carriers in the cavity and the absorber
2of ; 20t / 1 is essential to know the physics of the oscillations including
N O N the oscillation delay.
012348 8T8 00 08 10 45 20 28 In summary, we have fabricated and tested Hipla-
Pout ™ (nW ™) Pin"* (mw **)

nar photonic crystal cavities with mode volumes ranging be-
FIG. 4. (@) Shows frequencyf as a function of square root of collected WEEN 0-6 and 1.2 cubic wavelengths and observed modu-
output peak power (P,,). The sample was chosen such that the samplelated oscillations up to 130 GHz. We reported the dynamic

had the widest spacing between three equidistance peaks on pumping 50 hghavior of photonic crystal nanolasers by using the built-in
pulsed with a period of 5@s; (b) shows frequency as a function of square

. , , .~ saturable absorber.
root of collected input peak power/P;,) to display pumping level. Data in

(a) are used forb). Small pumping level P/P,<3) did not exhibit clear .
sideband features. These observations match with our microcavity analysis The authors wish to acknowledge generous supports

results that relaxation oscillation peaks are seerPfd?,,> 3. from the AFOSR and the DARPA. One of the auth6r<Q.)
would like to acknowledge the support from the Bio-Nano

o Program at the JPL, Caltech, under a contract with NASA.
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